Ayres, Ian. 2007. Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart. Bantam Books.
Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. 2015. “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.” PloS One 10 (7).
Barachant, Alexandre, Stéphane Bonnet, Marco Congedo, and Christian Jutten. 2013. “Classification of Covariance Matrices Using a Riemannian-Based Kernel for BCI Applications.” Neurocomputing 112: 172–78.
Berkhin, Pavel. 2006. “A Survey of Clustering Data Mining Techniques.” In Grouping Multidimensional Data, 25–71. Springer.
Binet, Alfred, and Th Simon. 1916. “New Methods for the Diagnosis of the Intellectual Level of Subnormals.(l’année Psych., 1905, Pp. 191-244).”
Bojarski, Mariusz, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner, Lawrence Jackel, and Urs Muller. 2017. “Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car.” arXiv Preprint arXiv:1704.07911.
Cheeseman, Peter, James Kelly, Matthew Self, John Stutz, Will Taylor, and Don Freeman. 1988. “Autoclass: A Bayesian Classification System.” In Machine Learning Proceedings 1988, 54–64. Elsevier.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. “Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding.” arXiv Preprint arXiv:1810.04805.
Dillon, William R, and Matthew Goldstein. 1984. Multivariate Analysismethods and Applications. 519.535 D5.
Fridman, Lex, Jack Terwilliger, and Benedikt Jenik. 2018. “DeepTraffic: Crowdsourced Hyperparameter Tuning of Deep Reinforcement Learning Systems for Multi-Agent Dense Traffic Navigation.” arXiv Preprint arXiv:1801.02805.
Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” arXiv Preprint arXiv:1412.6572.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
Gottfredson, Linda S. 1997. “Mainstream Science on Intelligence: An Editorial with 52 Signatories, History, and Bibliography.” Citeseer.
Grove, William M, David H Zald, Boyd S Lebow, Beth E Snitz, and Chad Nelson. 2000. “Clinical Versus Mechanical Prediction: A Meta-Analysis.” Psychological Assessment 12 (1): 19.
Harari, Yuval Noah. 2016. Homo Deus: A Brief History of Tomorrow. Random House.
Hermann, Jan, Zeno Schätzle, and Frank Noé. 2020. “Deep-Neural-Network Solution of the Electronic Schrödinger Equation.” Nature Chemistry 12 (10): 891–97.
Hernandez, Danny, and Tom B Brown. 2020. “Measuring the Algorithmic Efficiency of Neural Networks.” arXiv Preprint arXiv:2005.04305.
Howard, Jeremy, Margit Zwemer, and Mike Loukides. 2012. “Designing Great Data Products–the Drivetrain Approach: A Four-Step Process for Building Data Products.” Retrieved March 28: 2012.
Hussain, Naireen, and Daniel Tamayo. 2020. “Fundamental Limits from Chaos on Instability Time Predictions in Compact Planetary Systems.” Monthly Notices of the Royal Astronomical Society 491 (4): 5258–67.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. Springer.
Jeremy Howard, Sylvain Gugger. 2020. Deep Learning for Coders with Fastai and PyTorch. O’Reilly Media, Inc.
Kahneman, Daniel. 2011. Thinking, Fast and Slow. Macmillan.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. Vol. 26. Springer.
———. 2018. “Feature Engineering and Selection: A Practical Approach for Predictive Models.”
Lapuschkin, Sebastian, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. 2019. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.” Nature Communications 10 (1): 1–8.
Maaten, L. J. P. van der, and G. E. Hinton. 2008. “Visualizing High-Dimensional Data Using t-SNE.”
Makimoto, Hisaki. 2019. “Künstliche Intelligenz Erkennt Myokardinfarkte Im EKG Zuverlässiger Als Kardiologen.”
McAfee, Andrew, and Erik Brynjolfsson. 2017. Machine, Platform, Crowd: Harnessing Our Digital Future. WW Norton & Company.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.
Pfau, David, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. 2020. “Ab Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks.” Physical Review Research 2 (3): 033429.
Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, et al. 2015. ImageNet Large Scale Visual Recognition Challenge.” International Journal of Computer Vision (IJCV) 115 (3): 211–52.
Shankar, Shreya, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D Sculley. 2017. “No Classification Without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World.” arXiv Preprint arXiv:1711.08536.
Stokes, Jonathan M, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M Donghia, Craig R MacNair, et al. 2020. “A Deep Learning Approach to Antibiotic Discovery.” Cell 180 (4): 688–702.
Stone, Mervyn, and Rodney J Brooks. 1990. “Continuum Regression: Cross-Validated Sequentially Constructed Prediction Embracing Ordinary Least Squares, Partial Least Squares and Principal Components Regression.” Journal of the Royal Statistical Society: Series B (Methodological) 52 (2): 237–58.
Tamayo, Daniel, Miles Cranmer, Samuel Hadden, Hanno Rein, Peter Battaglia, Alysa Obertas, Philip J Armitage, et al. 2020. “Predicting the Long-Term Stability of Compact Multiplanet Systems.” Proceedings of the National Academy of Sciences 117 (31): 18194–205.
Tegmark, Max. 2017. Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf.
Temko, A, E Thomas, W Marnane, G Lightbody, and G Boylan. 2011a. “EEG-Based Neonatal Seizure Detection with Support Vector Machines.” Clinical Neurophysiology 122 (3): 464–73.
Temko, A, E Thomas, W Marnane, G Lightbody, and GB Boylan. 2011b. “Performance Assessment for EEG-Based Neonatal Seizure Detectors.” Clinical Neurophysiology 122 (3): 474–82.
Tibshirani, Robert, G James, D Witten, and T Hastie. 2013. An Introduction to Statistical Learning-with Applications in r. New York, NY: Springer.
Tulio Ribeiro, Marco, Sameer Singh, and Carlos Guestrin. 2016. “" Why Should i Trust You?": Explaining the Predictions of Any Classifier.” arXiv Preprint arXiv:1602.04938.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” CoRR abs/1706.03762.
Wei, Gu-Yeon, David Brooks, and others. 2019. “Benchmarking Tpu, Gpu, and Cpu Platforms for Deep Learning.” arXiv Preprint arXiv:1907.10701.
Widmaier, Mark, Maximilian Arnold, Sebastian Dorner, Sebastian Cammerer, and Stephan ten Brink. 2019. “Towards Practical Indoor Positioning Based on Massive MIMO Systems.” In 2019 IEEE 90th Vehicular Technology Conference (Vtc2019-Fall), 1–6. IEEE.
Wu, Neo, Bradley Green, Xue Ben, and Shawn O’Banion. 2020. “Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case.” arXiv Preprint arXiv:2001.08317.
Zhang, Zhongxing, Geert Mayer, Yves Dauvilliers, Giuseppe Plazzi, Fabio Pizza, Rolf Fronczek, Joan Santamaria, et al. 2018. “Exploring the Clinical Features of Narcolepsy Type 1 Versus Narcolepsy Type 2 from European Narcolepsy Network Database with Machine Learning.” Scientific Reports 8 (1): 1–11.
Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.” In Computer Vision (ICCV), 2017 IEEE International Conference on.